I said I was done here but, Jkeny read what a real pro engineer (objectivist may apply as well) says about measurements.
http://www.soundstageultra.com/index.php/features-menu/general-interest-interviews-menu/455-searching-for-the-extreme-bruno-putzeys-of-mola-mola-hypex-and-grimm-audio-part-one
and I lifted this from the article so you or anyone else with a measurement issue can get to the point: ps, you might learn a new way to measure your dac dude!
BP: “Textbook theory” is very often just a shortcut. When people say something like “In theory, it should happen like this . . . ,” what they actually mean to say is, “In the very first approximation, on a basic level, this is how it should go.” That’s oversimplification, not theory. Real theory isn’t so simple. It is like you say: in theory, cables shouldn’t make any difference. Well, hang on. Does that imply that you’ve actually looked at all of the established textbook physics that explains exactly what happens within a cable? I don’t mean “new physics,” like microdiodes or what have you, because I do think that’s a load of crock -- but, really, all the things you know happen when you, for instance, intersperse two conductors with a dielectric between them. How will that behave, for instance, when you actually put it up in a listening room and subject it to the vibrations that are caused by the speakers -- the triboelectric effect? Or just ordinary electromagnetic noise pickup from nearby mains cables? All these things are entirely known by physics and fully understood by theory. But the people who say that “in theory” it shouldn’t matter, they just look at one small corner in one particular textbook, where it doesn’t mention all these other things. Usually, where theory and practice deviate, it just means that your theory hasn’t gotten into enough theoretical detail.
So far, I have not yet bumped into anything in terms of audible differences that I, or anyone with me, could hear that did not at some point connect with established theory and known physics -- by which I mean ordinary street-level physics, none of your fancy quantum stuff. You really do not need to invent laws of physics from a parallel universe to explain things. And you don’t have to excuse yourself to say that theory does not connect with practice. If you look close enough, you will find [the connection]. If practice and theory seem to deviate, you better have a sharp look at your theory.
PR: There are parallels here to what we were talking about regarding measurements -- that when folks dismiss measurements and the ability to measure subjectively observable aural distinctions, they are simply not taking a full battery of appropriate, available measurements. When I spoke with Paul Barton [of PSB Speakers], he made a point about it being critical what you measure, how you measure, and then
applying it against what we know about the ear/brain interface and how sound is perceived in real space. He informed me that he can largely tell how something is going to sound based on his interpretation of the full set of measurements, and that, similar to how Beethoven could write symphonies after he lost his hearing, Barton could continue to design speakers were he to lose his hearing, due to the exhaustive sets of measurements he takes and his 42 years of correlating those measurements with the resulting perceived sound.
BP: I agree. In fact, I very often have to invent new measurements on the fly when I suspect there might be something going on that doesn’t show up clearly on standard measurements. To give one example, you could take a DAC and do something very classical, like sweep the level of a sinusoidal signal from full scale to nothing, and then look to see how distortion changes with signal level. You might find some minuscule squiggles at lower levels and shrug them off as measurement errors, like, “OK, that is just the machine not correctly measuring noise.” But I got suspicious at some point and said, “Hang on, let me try to find explicitly whether something happens in the noise floor with the signal modulation, but then I have to do so without a signal present. How do you do that?” Well, you sweep a DC input to a DAC. You feed it a constant code, some small value, and measure the noise. Increase that code and repeat. Suddenly you’ll find that some of these D-to-A converters will do these frightening things, like the noise floor suddenly shooting up or an audible whistle actually just walking through the audioband as you sweep, going from supersonic down to zero and then back up. You have to be creative when you measure, not just do the standardized battery