Let me bring to your attention, the C3g at it's introduction in 1952 was the fist Frame grid tube, and it was not available commercially. In short, a frame grid means the grid wire is not self supporting, but is wound around a hard metal frame. Like this, they could use wire which is so exceptionally thin, as it was never possible before. You cannot see this wire with the bare eye. This is quite strange to observe, when you take a frame grid tube apart. The grid wire is there of course, and you can 'see' there is something there, that you can look through, but you cannot see what that is. As if there is a gold colored, transparent layer, that you can see through. Things looks a bit 'unsharp' when you look though. Like the low resolution picture below. It is just like this when you look at a frame grid wit the bare eye. Then, if you click the picture it gets enlarged, and you can see the wires. This technology is more expensive, and was used for very few tube types, perhaps 100 only. Given the 10's of thousands other tube types ever made, this is not much.
Read here about frame grid tubes.
NOTE that in the 1980's when tubes were obsoleted, there was a lifetime-buy option by Siemens for the German post. It stretched over a few years. It is from this period that BIG lots of tubes were made, and just stored for later service of old hardware. Because of the high manufacturing numbers, these were very good quality. Popular tubes were C3g, C3m, and also Siemens ECC801S of remarkable good quality. Probably many other tubes as well, it's just these three Types I ran across myself. Something similar happened in the USA, and from that period many very good 6922, 5687, 12AT7 and 5751 are around. These are those tubes with a barcode label on them.
Then, the whole hardware developed so quickly after the digital multiplexing was used, and analog repeaters were taken out of service everywhere sooner than expected. And so, a six digit number of those tubes were stored and never used. Through the years these were sold, and it seems the German government stocks of C3g and C3m have dried up since 2005 or so. However, these tubes are always somewhere, and find the path to their end user.
Check for a 16 pages (!!) datasheet at our website / under Techcorner
I guess they came up with some more nasty things, that the tube manufacturers all had to comply with. Just look at how nice the triode connected curves are. These curves are so linear, I think there are very few triodes excising with such nice curves!
What to do, if you don't like the metal cap?
You can take off the metal housing, and inside is a very nice glass tube!
C3m inside |
C3g with cap |
C3g Inside.
Look at the two round plates above the pins. The lowest is a metal shield (outside connected) for lower hum. The other is the mica. The anodes are open from the sides. This open construction is the best for finest linearity. It allowed plate distance adjustments after the tube was assembled. This noncommercial construction was used already in DHT post tubes from the 1930's
Zirconium + Barium Getter
We are lucky to have only the C3g and C3m version with the additional zirconium getter. So that is additional to the Barium getter ring (or plate).
A Zirconium getter is expensive and it works like this: A Barium getter has most of its function during the short moment (a few seconds) that it is flashed during production, so when it is in the tube in the form of a cloud, while being transferred out of the getter halo, and condensing on the tube glass. This cloud, at the moment it exists inside the tube, absorbs (at that short moment) almost anything whatsoever. Then, after it will be condensed on the glass, the Barium getter is only conditional active. Like during great heat such as with KT88 tubes. However, little tubes like C3g cannot really use the getter anymore after activation. Of course there are some remaining functions left, amongst which is dust catching (yes!) but maintaining extremely high vacuum is not done. Here is where the Zirconium getter comes in. These need no flashing. They start to absorb gasses, whenever they have a sufficient temperature, and all you need to do is, mount it at a warm place. So really top class tubes have both getters. These tubes used to cost 295 DM when new, I have seen an original price list myself.
Zirconium getters can have various appearance. Some can be small square plates as you see here. With other tubes like EL503 they are hidden inside the plates. Tubes like 845 have Zirconium absorbed inside the graphite. With the 845 the Barium flash you see, is only used for initial vacuum during production. Maintenance of the vacuum is done by the Zirconium getter.
A Zirconium getter is expensive and it works like this: A Barium getter has most of its function during the short moment (a few seconds) that it is flashed during production, so when it is in the tube in the form of a cloud, while being transferred out of the getter halo, and condensing on the tube glass. This cloud, at the moment it exists inside the tube, absorbs (at that short moment) almost anything whatsoever. Then, after it will be condensed on the glass, the Barium getter is only conditional active. Like during great heat such as with KT88 tubes. However, little tubes like C3g cannot really use the getter anymore after activation. Of course there are some remaining functions left, amongst which is dust catching (yes!) but maintaining extremely high vacuum is not done. Here is where the Zirconium getter comes in. These need no flashing. They start to absorb gasses, whenever they have a sufficient temperature, and all you need to do is, mount it at a warm place. So really top class tubes have both getters. These tubes used to cost 295 DM when new, I have seen an original price list myself.
Zirconium getters can have various appearance. Some can be small square plates as you see here. With other tubes like EL503 they are hidden inside the plates. Tubes like 845 have Zirconium absorbed inside the graphite. With the 845 the Barium flash you see, is only used for initial vacuum during production. Maintenance of the vacuum is done by the Zirconium getter.
Cap Removal
It is really a matter of taste of you want to remove the cap or not. The optical advantage is beautiful. For myself, knowing what is inside, for me it is a tube as well also with the cap in place. Make good note, what the cap is intended for: It is an electrical shield for the tube, and the cap is electrically connected to the metal guide pin, in the center. So via the tube socket you can ground the cap. This is definitely a great advantage in case of very low signal applications. For a driver or headphone, removing the cap for optical reasons is sure nice. You can lift off the edges of the cap relatively easy, it is aluminum, and not aggressively attached or kitted. Also the tube glass will not break easily, because the location is the tube base, and this is pretty thick material. Yet, it is possible to break the glass still when you do not patiently peel the cap away.
After removing the cap, the part with the guide pin falls of, and I would recommend to glue this back on. Put two components glue on the sides.
Important: Do not fill glue in the center adjustment hole. That will eventually break the glass pipe in the middle. Note that one pin hole is square, and is used for positioning. Also you can now still use the guide pin to ground this part, and one way or another that is simply good, because the ground plane comes now closest possible to the hum sensitive grid.
Note: Hum is greatly reduced by using a low driver impedance. Also, when working at very low signal level, be ware that with all tubes, the grid noise, generated by the tube itself, is actually attenuated (better call it loaded), when using a very low impedance driver circuit. So the noise free signal from the driver and the noise from the tube, will not simply add up, but only one of the two will win. And that will be the driver signal, when it is low impedance. This has nothing to do with the C3g or C3m itself, but since C3g, C3m can be used in pre amplifiers, or even phono amplifiers, I think it is meaningful to mention this here still.